

Versaflex™ OM 6258-1

Thermoplastic Elastomer

Key Characteristics

Product Description

Versaflex™ OM 6258-1 is specifically designed to bond to a variety of standard and modified nylon materials, including those which are glass-filled, heat stabilized and/or impact modified.

- · Exceptional Colorability
- · Outstanding Adhesion in Both Two-Shot and Insert Molding Processes
- · Soft, Rubbery Grip
- · Very Easy to Process

General			
Material Status	 Commercial: Active 		
Regional Availability	 Africa & Middle East Asia Pacific	Latin AmericaNorth America	
Features	 Good Adhesion 	 Good Colorability 	 Good Processability
Uses	 Lawn and Garden Equipment 	Overmolding	Power/Other Tools
RoHS Compliance	 RoHS Compliant 		
Appearance	 Natural Color 		
Forms	 Pellets 		
Processing Method	 Injection Molding 		

Technical Properties¹

Physical	Typical Value (English)	Typical Value (SI)	Test Method
Density / Specific Gravity	1.09	1.09	ASTM D792
Molding Shrinkage - Flow	0.014 to 0.020 in/in	1.4 to 2.0 %	ASTM D955
Elastomers	Typical Value (English)	Typical Value (SI)	Test Method
Tensile Stress ^{2, 3} (100% Strain, 73°F (23°C))	275 psi	1.90 MPa	ASTM D412
Tensile Stress ^{2, 3} (300% Strain, 73°F (23°C))	385 psi	2.65 MPa	ASTM D412
Tensile Strength ^{2, 3} (Break, 73°F (23°C))	400 psi	2.76 MPa	ASTM D412
Tensile Elongation ^{2, 3} (Break, 73°F (23°C))	350 %	350 %	ASTM D412
Tear Strength	105 lbf/in	18.4 kN/m	ASTM D624
Compression Set (73°F (23°C), 22 hr)	23 %	23 %	ASTM D395B
Hardness	Typical Value (English)	Typical Value (SI)	Test Method
Durometer Hardness (10 sec)	62	62	ASTM D2240
Fill Analysis	Typical Value (English)	Typical Value (SI)	Test Method
Apparent Viscosity	·	·	ASTM D3835
392°F (200°C), 11200 sec^-1	31.6 Pa·s	31.6 Pa⋅s	

Processing Information

	_		
Injection	Typical Value (English)	Typical Value (SI)	
Suggested Max Regrind	20 %	20 %	
Rear Temperature	360 to 400 °F	182 to 204 °C	
Middle Temperature	470 to 510 °F	243 to 266 °C	

Copyright ©, 2021 Avient Corporation. Avient makes no representations, guarantees, or warranties of any kind with respect to the Information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the Information. Some of the Information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as "typical" or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in the Information. Avient makes no warranties or guarantees respecting suitability of either Avient's products or the Information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability in your application, and you assume all risk and liability arising from your use of the Information and/or use or handling of any product. Avient MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED D WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, either with respect to the Information or products reflected by the Information. This data sheet shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.

Rev: 2016-02-12 Page: 1 of 2

Injection	Typical Value (English)	Typical Value (SI)	
Front Temperature	480 to 520 °F	249 to 271 °C	
Nozzle Temperature	490 to 530 °F	254 to 277 °C	
Processing (Melt) Temp	480 to 520 °F	249 to 271 °C	
Mold Temperature	55 to 85 °F	13 to 29 °C	
Back Pressure	0.00 to 80.0 psi	0.00 to 0.552 MPa	
Screw Speed	80 to 120 rpm	80 to 120 rpm	

Injection Notes

Purge thoroughly before and after use of this product with a low flow (0.5 - 2.5 MFR) polyethylene (PE) or polypropylene (PP).

Regrind levels up to 20% can be used with VersaflexTM OM 6258-1 with minimal property loss, provided that the regrind is free of contamination. To minimize losses during molding, the melt temperature should remain as low as possible. The final determination of regrind effectiveness should be determined by the customer.

Versaflex[™] OM 6258-1 has good melt stability. Maximum residence times may vary, depending on the size of the barrel. Generally, the barrel should be emptied if it is idle for periods of 8 - 10 minutes or longer.

Drying is not Required

Injection Speed: 3 to 6 in/sec

1st Stage - Boost Pressure: 300 to 800 psi 2nd Stage - Hold Pressure: 0% of Boost Hold Time (Thick Part): 0 to 4 sec Hold Time (Thin Part): 0 to 3 sec

Notes

- ¹ Typical values are not to be construed as specifications.
- ² Die C
- 3 2 hr

. . . .

CONTACT INFORMATION

North America
Avon Lake, United States
33587 Walker Road
Avon Lake, OH, United States
44012
+1 440 930 1000
+1 844 4AVIENT

South America Sao Paulo, Brazil Av. Francisco Nakasato, 1700 13295-000 Itupeva Sao Paulo, Brazil +55 11 4593 9200

Asia Shanghai, China 2F, Block C 200 Jinsu Road Pudong, 201206 Shanghai, China +86 (0) 21 6028 4888

EuropePommerloch, Luxembourg 19 Route de Bastogne

Pommerloch, Luxembourg , L-9638 +352 269 050 35

Copyright ©, 2021 Avient Corporation. Avient makes no representations, guarantees, or warranties of any kind with respect to the Information contained in this document about its accuracy, suitability for particular applications, or the results obtained or obtainable using the information. Some of the Information arises from laboratory work with small-scale equipment which may not provide a reliable indication of performance or properties obtained or obtainable on larger-scale equipment. Values reported as "typical" or stated without a range do not state minimum or maximum properties; consult your sales representative for property ranges and min/max specifications. Processing conditions can cause material properties to shift from the values stated in the Information. Avient makes no warranties or guarantees respecting suitability of either Avient's products or the Information for your process or end-use application. You have the responsibility to conduct full-scale end-product performance testing to determine suitability in your application, and you assume all risk and liability arising from your use of the Information and/or use or handling of any product. Avient MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCIDING, BUT NOT LIMITED TO, IMPLIED FO MERCHANTIBLITY AND FITNESS FOR A PARTICULAR PURPOSE, either with respect to the Information or products reflected by the Information. This data sheet shall NOT operate as permission, recommendation, or inducement to practice any patented invention without permission of the patent owner.

Rev: 2016-02-12 Page: 2 of 2